Вариант № 12810

Централизованное тестирование по математике, 2017

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1028
i

Ука­жи­те но­ме­ра пря­мо­уголь­ни­ков, изоб­ра­жен­ных на ри­сун­ках 1−5, при вра­ще­нии ко­то­рых во­круг сто­ро­ны AD по­лу­ча­ет­ся ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат.

1)

2)

3)

4)

5)



2
Задание № 1029
i

Вы­ра­зи­те 737 см 8 мм в мет­рах с точ­но­стью до сотых.



3
Задание № 1030
i

На ри­сун­ке изоб­ра­жен гра­фик дви­же­ния ав­то­мо­би­ля из пунк­та O в пункт C. Ско­рость дви­же­ния ав­то­мо­би­ля на участ­ке BC (в км/ч) равна:



4
Задание № 1031
i

Вы­ра­зи­те a из ра­вен­ства  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2b плюс 1 конец дроби = дробь: чис­ли­тель: 6, зна­ме­на­тель: a минус b конец дроби .



5
Задание № 1032
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:



6
Задание № 1033
i

По­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-ого члена a_n=3n в квад­ра­те минус 8n плюс 9. Вто­рой член этой по­сле­до­ва­тель­но­сти равен:



7
Задание № 1034
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:



8
Задание № 1035
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.



9
Задание № 1036
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  32. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.



10
Задание № 1037
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 2x минус 4,6 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4,6 при −1 < x < 1 имеет вид:



11
Задание № 1038
i

На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см х 1 см изоб­ра­же­на фи­гу­ра. Из­вест­но, что пло­щадь этой фи­гу­ры со­став­ля­ет 28% пло­ща­ди не­ко­то­рой тра­пе­ции. Най­ди­те пло­щадь тра­пе­ции в квад­рат­ных сан­ти­мет­рах.



12
Задание № 1039
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK4 см; 5 см; 8 см
ΔBDC3 см; 4 см; 5 см
ΔFBC7 см; 8 см; 9 см
ΔCDE5 см; 11 см; 13 см


13
Задание № 1040
i

Ку­пи­ли m ручек по цене 2 руб. 3 коп. за штуку и 178 тет­ра­дей по цене a коп. за штуку. Со­ставь­те вы­ра­же­ние, ко­то­рое опре­де­ля­ет, сколь­ко руб­лей стоит по­куп­ка.



14
Задание № 1041
i

Среди пред­ло­жен­ный урав­не­ний ука­жи­те номер урав­не­ния, гра­фи­ком ко­то­ро­го яв­ля­ет­ся па­ра­бо­ла, изоб­ра­жен­ная на ри­сун­ке:



15
Задание № 1042
i

ABCDA1B1C1D1  — куб. Точки M и N  — се­ре­ди­ны ребер AD и DC со­от­вет­ствен­но, K при­над­ле­жит A_1D_1, KA_1:KD_1=1:3 (см. рис.). Се­че­ни­ем куба плос­ко­стью, про­хо­дя­щей через точки M, N и K, яв­ля­ет­ся:



16
Задание № 1043
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний двой­но­го не­ра­вен­ства  минус 448,9 мень­ше 2,9 плюс 9x мень­ше 23,6.



17

Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 2 : 3.



18
Задание № 1045
i

Ука­жи­те (в гра­ду­сах) наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  ко­си­нус левая круг­лая скоб­ка 6x минус 72 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



19
Задание № 1046
i

Для на­ча­ла каж­до­го из пред­ло­же­ний A−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Окруж­ность с цен­тром в точке (−8; −2) и ра­ди­у­сом 4 за­да­ет­ся урав­не­ни­ем:

Б)  Урав­не­ни­ем пря­мой, про­хо­дя­щей через точку (−8; 2) и па­рал­лель­ной пря­мой y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x, имеет вид:

В)  Гра­фик об­рат­ной про­пор­ци­о­наль­но­сти, про­хо­дя­щий через точку  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , за­да­ет­ся урав­не­ни­ем:

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  xy=2

2)   левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=4

4)   левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =16

5)  4xy плюс 1=0

6)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс y=2

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 1047
i

Кон­фе­ты в ко­роб­ки упа­ко­вы­ва­ют­ся ря­да­ми, при­чем ко­ли­че­ство кон­фет в каж­дом ряду на 4 боль­ше, чем ко­ли­че­ство рядов. Ди­зайн ко­роб­ки из­ме­ни­ли, при этом до­ба­ви­ли 2 ряда, а в каж­дом ряду до­ба­ви­ли по 1 кон­фе­те. В ре­зуль­та­те ко­ли­че­ство кон­фет в ко­роб­ке уве­ли­чи­лось на 25. Сколь­ко кон­фет упа­ко­вы­ва­лось в ко­роб­ку пер­во­на­чаль­но?


Ответ:

21
Задание № 1048
i

Из­вест­но, что при a, рав­ном −2 и 4, зна­че­ние вы­ра­же­ния 4a в кубе плюс 3a в квад­ра­те минус ab плюс c равно нулю. Най­ди­те зна­че­ние вы­ра­же­ния b + с.


Ответ:

22
Задание № 1049
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та


Ответ:

23
Задание № 1050
i

В па­рал­ле­ло­грам­ме с ост­рым углом 45° точка пе­ре­се­ния диа­го­на­лей уда­ле­на от пря­мых, со­дер­жа­щих не­рав­ные сто­ро­ны, на рас­сто­я­ния  дробь: чис­ли­тель: 7 ко­рень из 2 , зна­ме­на­тель: 2 конец дроби и 2. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма.


Ответ:

24

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...


Ответ:

25
Задание № 1052
i

Ре­ши­те не­ра­вен­ство  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка боль­ше или равно левая круг­лая скоб­ка 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4x плюс 25, зна­ме­на­тель: x плюс 4 конец дроби пра­вая круг­лая скоб­ка . В от­ве­те за­пи­ши­те сумму целых ре­ше­ний, при­над­ле­жа­щих про­ме­жут­ку [−20; −2].


Ответ:

26
Задание № 1053
i

Най­ди­те уве­ли­чен­ное в 9 раз про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  12 и гра­фи­ка не­чет­ной функ­ции, ко­то­рая опре­де­ле­на на мно­же­стве  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка и при x > 0 за­да­ет­ся фор­му­лой y=2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 8 пра­вая круг­лая скоб­ка минус 20.


Ответ:

27

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 7,5.


Ответ:

28

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 16, зна­ме­на­тель: 6 плюс |24 минус x| конец дроби боль­ше |24 минус x|.


Ответ:

29
Задание № 1056
i

Пер­вые члены ариф­ме­ти­че­ской и гео­мет­ри­че­ской про­грес­сии оди­на­ко­вы и равны 1, тре­тьи члены также оди­на­ко­вы, а вто­рые от­ли­ча­ют­ся на 18. Най­ди­те ше­стой член ариф­ме­ти­че­ской про­грес­сии, если все члены обеих про­грес­сий по­ло­жи­тель­ны.


Ответ:

30

ABCDA1B1C1D1  — пря­мая че­ты­рех­уголь­ная приз­ма, объем ко­то­рой равен 960. Ос­но­ва­ни­ем приз­мы яв­ля­ет­ся па­рал­ле­ло­грамм ABCD. Точки M и N при­над­ле­жат реб­рам A1D1 и С1D1, так что A1M : A1D1 = 1 : 2, D1N : NC1 = 2 : 1. От­рез­ки A1N и B1M пе­ре­се­ка­ют­ся в точке K. Най­ди­те объем пи­ра­ми­ды SB1KNC1, если S при­над­ле­жит B_1D и B1S : SD = 3 : 1.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.